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-INFINITELY MANY ANOMALOUS EXPONENTS
-INFINITELY MANY UV CUTOFFS

Degrees of freedom of turbulence

Giovanni Paladin and Angelo Vulpiani
Phys. Rev. A 35, 1971(R) — Published 1 February 1987
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STOCHASTIC MODELS FOR LAGRANGIAN TURBULENCE: WHY?

T. Li, LB, F. Bonaccorso, M. Scarpolini, M. Buzzicotti.
Synthetic Lagrangian Turbulence by Generative Diffusion Models. arXiv:2307.08529 — in press Nature Machine Intelligence (2024)

GENERATION OF LARGE SYNTHETIC DATA-BASE FOR
()  RANKING OF PHYSICS FEATURES

() TESTING DOWNSTREAM APPLICATIONS/MODELS FOR:
(A)  SINGLE, TWO AND MULTI-PARTICLES DISPERSION

(B)  PARTICLES’ BREAKING/AGGREGATION

(C)  CHORENT STRUCTURES TRACKING

(D)  MULTI-TIME MULTI-SCALE TURBULENT FLUCTUATIONS

(111) DATA ASSIMILATION/IMPUTATION FROM MISSING
FIELD/EXPERIMENTAL OBERVATION

v

(IV) CLASSIFICATION/INFERRAL OF MISSING/INTERNAL

PROPERTIES:
i. INERTIA
ii. SHAPE

iii. ACTIVE DEGREES OF FREEDOM
iv.
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DIFFUSION MODELS

‘Synthetic Lagrangian Turbulence: all you need is Diffusion Models’
T. Li, L.B, F. Bonaccorso, M. Scarpolini and M. Buzzicotti (arXiv:2307.08529 2024, Nature Machine Intelligence in press)
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STOCHASTIC MODELS FOR LAGRANGIAN TURBULENCE: WHY?

T. Li, LB, F. Bonaccorso, M. Scarpolini, M. Buzzicotti.
Synthetic Lagrangian Turbulence by Generative Diffusion Models. arXiv:2307.08529 — in press Nature Machine Intelligence (2024)

GENERATION OF LARGE SYNTHETIC DATA-BASE FOR
()  RANKING OF PHYSICS FEATURES

() TESTING DOWNSTREAM APPLICATIONS/MODELS FOR:
(A)  SINGLE, TWO AND MULTI-PARTICLES DISPERSION

(B)  PARTICLES’ BREAKING/AGGREGATION

(C)  CHORENT STRUCTURES TRACKING

(D)  MULTI-TIME MULTI-SCALE TURBULENT FLUCTUATIONS

(111) DATA ASSIMILATION/IMPUTATION FROM MISSING
FIELD/EXPERIMENTAL OBERVATION
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(IV) CLASSIFICATION/INFERRAL OF MISSING/INTERNAL

PROPERTIES:
i. INERTIA
ii. SHAPE

iii. ACTIVE DEGREES OF FREEDOM
iv.
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IMPUTATION, CONDITIONAL TEXT GENERATION

Since Kolmogorov's conjecture, ...... in this so-called ..... range have been
expected to follow universal ..... for which theoretical predictions ......

1. Since Kolmogorov's conjecture, scaling laws in this so-called inertial
range have been expected to follow universal behavior for which
theoretical predictions exist.

2. Since Kolmogorov’s conjecture, turbulent flows in this so-called inertial range
have been expected to follow universal scaling laws for which theoretical
predictions abound.

GT: Since Kolmogorov’s conjecture, the velocity difference statistics in this
so-called inertial range have been expected to follow universal power laws
for which theoretical predictions have been refined over the years



UNCONDITIONED TEXT GENERATION
Q: TELL MORE ABOUT UNIVERSALITY OF SMALL-SCALE FLUCTUATIONS IN TURBULENCE

Small-scale fluctuations in turbulence are not entirely universal
across all scales and flow conditions. While certain statistical
properties, such as the energy cascade from large to small
scales, exhibit universal behavior as predicted by like
Kolmogorov's, the specifics of small-scale fluctuations can vary
depending on factors such as the Reynolds number, flow
geometry, and presence of external forces.

However, there are certain aspects of small-scale turbulence
that can be considered more universal. For example, in the
inertial subrange of high Reynolds number turbulence, the
statistical behavior of small-scale fluctuations tends to follow
power-law scaling consistent with Kolmogorov's theories. Yet,
the precise values of parameters such as the Kolmogorov
constant or the intermittency corrections can vary in different
flows. Therefore, while there are universal features in small-
scale turbulence, there are also non-universal aspects that
depend on the specific conditions of the flow.




IMPUNTATION OF LAGRANGIAN TRAJECTORIES: CONDITIONAL DM
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Gaussian Process Regression (GPR)

Gap region, G

O

Training process: . .
Reconstruction with measurement, Vg:

(Crr)is = (V(E:)V(¢5))

computing the covariance with training data
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GAUSSIAN PROCESS REGRESSION

DIFFUSION MODEL




KULLBACK-LEIBLER JENSEN-SHANNON
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2nd order 4th order 6th order






GENERATION IN THE LOOP
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